

Capacity Credit of Renewables and Storage in Low-Carbon Power Systems

Prof Pierluigi Mancarella

Chair of Electrical Power Systems, The University of Melbourne Professor of Smart Energy Systems, The University of Manchester *veski* Innovation Fellow

pierluigi.mancarella@unimelb.edu.au

"Tendencias actuales para el reconocimiento de potencia en sistemas eléctricos con bajas emisiones de CO₂"

Santiago, Chile, 23rd September 2020

Outline

- Context:
 - Variable Renewable Energy (VRE) sources
 - Supply adequacy
- "Capacity Credit" of VRE (and storage):
 - Definitions
- Approaches to capacity credit assessment
- Case study examples
- Concluding remarks

What is meant by intermittent/variable generation?

- Generation whose output varies with environmental conditions and for which the operator has no control upon the "available fuel"
- Many renewables (such as wind, solar, etc.) are classified as being intermittent/variable

- Variable Renewable Energy (VRE)

- Can VRE provide *reliable supply*?
- How intermittent/variable is conventional thermal generation?

Long-term reliability: generation (or more generally "supply") adequacy

- Generation adequacy:
 - Capability to meet demand with a certain level of reliability of supply
- Various reliability indicators to measure adequacy
 - LOLP (Loss of Load Probability)
 - **LOLE** (Loss of Load Expectation)
 - Probability of (peak) demand exceeding available generation
 - **EENS** (Expected Energy Not Supplied)

Classical approach to determining generation adequacy and plant margin

- The higher the planned *capacity margin*, the lower the LOLP (or other reliability indicator)
- Generation capacity is considered "adequate" if the system meets minimum levels required for LOLP, EENS, etc.

"The Book": R. Billinton and R.N. Allan, *Reliability evaluation of power systems*, Springer, 1996

Example: Generation adequacy and capacity margin

Capacity measures for variable generation

- <u>Capacity credit</u> (or *capacity value*) of VRE sources is a measure of the amount of load that can be served on an electricity system by variable plant with no decrease in the reliability level (e.g., no increase in the LOLP)
 - It is often expressed in terms of *conventional thermal capacity that variable generation capacity can replace*
- <u>Capacity factor</u> is the energy produced by a generator relative to the maximum possible energy output (100% of max output at all times)
 - Capacity factor for base load thermal generators can be around 85%
 - Wind achieves capacity factors of 20% 50%

Determinants of capacity credit

- The degree of correlation between demand peaks and variable output
- The average level of output
 - A higher level of average output over peak periods will tend to increase capacity credit
- The range of variable outputs (*diversity*)
 - For example, having different types of variable plant on a system decreases variance and increases overall renewables capacity credit

Displaced conventional capacity by wind generation – a simple UK example

Note: calculations assume 40% wind capacity factor

Capacity Credit in Low-carbon Power Systems: a more general definition

- Capacity Credit of generation, storage, or flexible load resources:
 - Contribution of the resource to supply adequacy
- The amount of <u>conventional power generation</u> that can be <u>replaced or avoided</u> by adding VRE, Storage, Demand Response (DR) to the system without reducing the system reliability level

Key questions pertinent to capacity credit

- How much can we rely on VRE to provide security of supply?
 - System adequacy
 - "Firm capacity" of VRE?
- How can storage (and DR) help firm up the capacity of VRE?
- How should VRE capacity be valued in markets

How to Calculate Capacity Credit: Methods

Methods based on approximations and proxies

- Capacity Factor Approximation Method
- Loss-of-Load Probability-Weighted Capacity Approximation
- Garver-Method, Z-Method
- Pros: Low computational burden
- Cons: Not accurate (variance can be up to 100%)
 - especially with different VRE types, penetration levels
 - basically not trustable *at all* with storage, complex system and market operation, etc.

Simple formulas? Forget-about-it!

How to Calculate Capacity Credit: Methods

Reliability-based methods

Analytical methods

- Example: Capacity Outage Probability Table (COPT)
- Pros: Simple
- Cons:
 - Not accurate

 Time-independent: the temporal correlation between demand and wind/solar or storage/DR cannot be considered

How to Calculate Capacity Credit: Methods

Reliability-based methods

- Monte-Carlo Simulation (MCS)
 - Pros:
 - Accurate, as can model system operation in any detail
 - Cons:
 - Computationally (very) heavy
 - However, fortunately the state of the art is rich in acceleration and fast sampling techniques
- Methodology:
 - Calculate the **net load profiles** (load not covered by VRE, storage or DR) from:
 - Time series of wind/solar (from different climatic years)
 - Production models
 - Calculate conventional generators' available capacity profile
 - Assess reliability indicators (LOLE, EENS, etc.)

How to Calculate Capacity Credit: Monte-Carlo Simulation (MCS)

How to calculate the Capacity Credit of a resource: Metrics

Effective Load Carrying Capability (ELCC)

 The amount by which the system's load can increase (when a resource is added to the system) while maintaining the same system reliability (as measured by LOLP, LOLE, etc.)

* Figure adapted from [1], general methodology discussed in [3] and [4]

How to calculate the Capacity Credit of a resource: Metrics

- Equivalent Generation Capacity Substitution (EGCS):
 - The amount of *conventional generation* that could be displaced (retired) by adding a new resource while preserving the level of system adequacy

* Adapted from [1], [3] and [4]

Melbourne, 2020 Capacity credit, Santiago, 23rd Sep 2020

Example: Australian National Electricity Market (NEM) grid

- Wind Potential: 20 GW
- Solar Potential: 17 GW
- System Peak Demand: 36 GW
- Proposed Pumped-Hydro Storage Plant (PHSP):
 - 15 Utility Scale PHSP Projects
 - total = 2.9 GW * 17 h \approx 50 GWh

EGCS of Wind and Solar in NEM

Individual: The sum of EGCS values of wind & solar when operated independently

Aggregate: The EGCS value of wind & solar when they are both in the system

EGCS of Wind, Solar and PHSP

Installed Wind&Solar Cap/Max Potential = 1
 Installed Wind&Solar Cap/Max Potential = 0.8
 Installed Wind&Solar Cap/Max Potential = 0.4
 Installed Wind&Solar Cap/Max Potential = 0.2

Adequacy of a VRE-based NEM

How much storage do we need?

PHSP maximum charging and discharging power:

- 6h (green)
- 12h (blue)
- 24h (red)

Results from [5]

Conventional generation increases

© Pierluigi Mancarella - The University of Melbourne, 2020

Capacity credit, Santiago, 23rd Sep 2020

Role and impact of network

Illustration of capacity credit evaluation in multi-area system^[6]

- Capacity credit can be grossly over-estimated without considering network constraints
- Network constraints have impact on system scheduling and generation adequacy
- Meshing the system and a stronger interconnection to an area with large storage (TAS) or high capacity margin (QLD) can unlock more CC

See [6] for details

Capacity Credit of Distributed Energy Storage: UK case study example

The energy/power ratio of batteries is assumed to be equal to 2

See [1] for details

© Pierluigi Mancarella - The University of Melbourne, 2020

Key concluding remarks

- Capacity Credit (CC) is a key technical concept for system planning and market design in the presence of renewables and other enabling technologies such as storage
- Given the complexity of system and market operation with renewables and storage, simple formulas do not work!
- Reliability-based Monte Carlo Simulations assessment is the state-of-the-art and most suitable methodology
- Different metrics for capacity credit may be adopted (e.g., EGCS, ELCC) with different reliability indicators (e.g., LOLE)
- Renewables can provide significant capacity value, especially if "firmed up" by storage, but the assessment is case specific and requires suitable modelling
- Networks can be both enabling and constraining system CC
- Distributed storage can provide (substantial) CC but requires suitable market signals over-riding self-consumption incentives

References

[1] L. Zhang, Y. Zhou, D. Flynn, J. Mutale and P. Mancarella, "System-Level Operational and Adequacy Impact Assessment of Photovoltaic and Distributed Energy Storage, with Consideration of Inertial Constraints, Dynamic Reserve and Interconnection Flexibility", *Energies*, vol. 10, no. 7, p. 989, 2017

[2] Y. Zhou, P. Mancarella and J. Mutale, "Generation adequacy in wind rich power systems: Comparison of analytical and simulation approaches," 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, 2014, pp. 1-6

[3] Y. Zhou, P. Mancarella and J. Mutale, "A framework for capacity credit assessment of electrical energy storage and demand response", *IET Generation, Transmission & Distribution*, vol. 10, no. 9, pp. 2267-2276, 2016

[4] Y. Zhou, P. Mancarella and J. Mutale, "Modelling and assessment of the contribution of Demand Response and Electrical Energy Storage to Adequacy of Supply", *Sustainable Energy, Grid And Networks (SEGAN)*, vol. 3, pp. 12–23, September 2015

[5] G. Liu and P. Mancarella, "Adequacy Assessment of Renewables-Dominated Power Systems with Large-Scale Energy Storage," 2019 29th Australasian Universities Power Engineering Conference (AUPEC), Nadi, Fiji, 2019, pp. 1-6, doi: 10.1109/AUPEC48547.2019.211877

[6] G. Liu, M. Vrakopoulou and P. Mancarella, "Assessment of the capacity credit of renewables and storage in multi-area power systems", *IEEE Trans. of Power Systems, submitted, under second review*

Capacity Credit of Renewables and Storage in Low-Carbon Power Systems

Prof Pierluigi Mancarella

Chair of Electrical Power Systems, The University of Melbourne Professor of Smart Energy Systems, The University of Manchester *veski* Innovation Fellow

pierluigi.mancarella@unimelb.edu.au

"Tendencias actuales para el reconocimiento de potencia en sistemas eléctricos con bajas emisiones de CO₂"

Santiago, Chile, 23rd September 2020

How to calculate the Capacity Credit of a resource: Metrics

- Equivalent Conventional Capacity (ECC):
 - The capacity of a virtual conventional generator that can replace the new resource while maintaining the same system reliability level
- Equivalent Firm Capacity (EFC):
 - The capacity of a virtual, fully reliable conventional generator that can replace the new resource while maintaining the same system reliability level LOLE of original

EGCS of Wind and PHSP

Installed Wind Cap/Max Potential = 1
 Installed Wind Cap/Max Potential = 0.8
 Installed Wind Cap/Max Potential = 0.4
 Installed Wind Cap/Max Potential = 0.2

Installed Solar Cap/Max Potential = 1
 Installed Solar Cap/Max Potential = 0.8
 Installed Solar Cap/Max Potential = 0.4
 Installed Solar Cap/Max Potential = 0.2

Capacity credit assessment in multi-area systems

	Wind Potential	Solar Potential	P Pr	HSP ojects	Peak Demand	
QLD	3.89GW	4GW	0.31	GW*5h	8.9GW	
NSW	7GW	7GW	1G	W*14h	15.1GW	
VIC	5.21GW	4.9GW	0.03	GW*6h	10GW	
SA	2GW	0.98GW	0.360	GW*13h	2.52GW	
TAS	0.9GW	0	1.2G	W*24h	1.5GW	
Total	19GW	16.88GW	2.9G	W*17h	36GW	
	Conv Generatio	Conventional Generation Capacity		Conventional Generation Capacity Margin		
QLD	13.0	13.63GW		4.73GW		
NSW	15.32GW			0.22GW		
VIC	10.0	10.67GW		0.67GW		
SA	2.4	2.43GW		-0.09GW		
TAS	2.46GW			0.96GW		
Total	44.:	51GW		6.39GW		
Interconnector		From/To	To/Fro	m Ca	apacity/MW	
Terranora		QLD	NSW	-	210	
ONI		OLD	NSW		1078	

See [6] for details

© Pierluigi Mancarella - The University of Melbourne, 2020

VIC

TAS

VIC

VIC

NSW

VIC

SA

SA

1600

594

600

220

VIC1-NSW1

Basslink

Heywood

Murraylink

Case studies for multi-area system

- NEM Wind +Solar +Storage Aggregation System
- Three cases are studied:
 - Base Case (BA):
 - the system is treated as a single area system
 - Multi-area Case 1 (MAC1):
 - network constraints are considered
 - all interconnectors are assumed to be fully reliable and with nominal capacity
 - Multi-area Case 2 (MAC2):
 - both network constraints and interconnectors' unavailability are considered

See [6] for details

Results and analysis for multi-area systems

NEM: Wind + Solar + Storage System

