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Outline

= Context:
— Variable Renewable Energy (VRE) sources
— Supply adequacy

= “Capacity Credit” of VRE (and storage):
— Definitions

= Approaches to capacity credit assessment

= Case study examples

= Concluding remarks
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What is meant by
intermittent/variable generation?

= (Generation whose output varies with environmental
conditions and for which the operator has no control
upon the “available fuel”

= Many renewables (such as wind, solar, etc.) are
classified as being intermittent/variable

- Variable Renewable Energy (VRE)
= Can VRE provide reliable supply?

" How intermittent/variable is conventional thermal
generation?
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Long-term reliability:
generation (or more generally "supply”) adequacy

= Generation adequacy:

— Capability to meet demand with a certain level of
reliability of supply

= Various reliability indicators to measure adequacy
— LOLP (Loss of Load Probability)
— LOLE (Loss of Load Expectation)

e Probability of (peak) demand exceeding available
generation

— EENS (Expected Energy Not Supplied)
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Classical approach to determining
generation adequacy and plant margin

Expected peak

Generation 100%
available at Peak Generation

Probability
A Peak

demand

forecast

Risk of insufficient generation

(LOLP, LOLE, EENS)

A

v

Capacity Margin
= The higher the planned capacity margin, the lower the LOLP
(or other reliability indicator)

= Generation capacity is considered “adequate” if the system
meets minimum levels required for LOLP, EENS, etc.

“The Book”: R. Billinton and R.N. Allan, Reliability evaluation of power systems, Springer, 1996
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Example: Generation adequacy and
capacity margin
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Capacity measures for variable generation

= Capacity credit (or capacity value) of VRE sources is a
measure of the amount of load that can be served on an
electricity system by variable plant with no decrease in the
reliability level (e.g., no increase in the LOLP)

— It is often expressed in terms of conventional thermal
capacity that variable generation capacity can replace

= Capacity factor is the energy produced by a generator
relative to the maximum possible energy output (100% of max
output at all times)

— Capacity factor for base load thermal generators can be
around 85%

— Wind achieves capacity factors of 20% - 50%

Capacity Credit == Capacity Value == Capacity Factor
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Determinants of capacity credit
" The degree of correlation between demand peaks and
variable output
" The average level of output

- A higher level of average output over peak periods will
tend to increase capacity credit

= The range of variable outputs (diversity)

— For example, having different types of variable plant
on a system decreases variance and increases overall
renewables capacity credit
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Displaced conventional capacity
by wind generation — a simple UK example
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Note: calculations assume 40% wind capacity factor
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Capacity Credit in Low-carbon Power Systems:
a more general definition

Capacity Credit of generation, storage, or flexible load
resources:

Contribution of the resource to supply adequacy

= The amount of conventional power generation that can be
replaced or avoided by adding VRE, Storage, Demand

Response (DR) to the system without reducing the system
reliability level

— [
I+ ®

d=
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Key questions pertinent to capacity credit

= How much can we rely on VRE to provide security of supply?
— System adequacy
- “Firm capacity” of VRE?
= How can storage (and DR) help firm up the capacity of VRE?
= How should VRE capacity be valued in markets

den 430 450
den 450 450 dml 45N <80
din 450 &80 denl 450 <45
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How to Calculate Capacity Credit:
Methods

Methods based on approximations and proxies

Capacity Factor Approximation Method
Loss-of-Load Probability-Weighted Capacity Approximation
Garver-Method, Z-Method

Pros: Low computational burden
Cons: Not accurate (variance can be up to 100%)
- especially with different VRE types, penetration levels

- basically not trustable at all with storage, complex
system and market operation, etc.

P
Simple formulas?
Forget-about-it!
) —
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How to Calculate Capacity Credit:
Methods

Reliability-based methods

= Analytical methods
- Example: Capacity Outage Probability Table (COPT)

Cl, Pl C2,P2 C3,P3 C4, P4

= Pros: Simple |
= Cons: ‘ ‘ ‘ 6 ‘ ‘ ‘ O
- Not accurate @ o @ -umwiavie

— Time-independent: the temporal correlation between demand and
wind/solar or storage/DR cannot be considered
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How to Calculate Capacity Credit:
Methods

Reliability-based methods

= Monte-Carlo Simulation (MCS)
— Pros:
e Accurate, as can model system operation in any detail
- Cons:
e Computationally (very) heavy

- However, fortunately the state of the art is rich in
acceleration and fast sampling techniques

= Methodology:

— Calculate the net load profiles (load not covered by VRE, storage
or DR) from:

e Time series of wind/solar (from different climatic years)
e Production models
— Calculate conventional generators’ available capacity profile
— Assess reliability indicators (LOLE, EENS, etc.)
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How to Calculate Capacity Credit:
Monte-Carlo Simulation (MCS)
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How to calculate the Capacity Credit of a resource:
Metrics

= Effective Load Carrying Capability (ELCC)

— The amount by which the system’s load can increase (when
a resource is added to the system) while maintaining the
same system reliability (as measured by LOLP, LOLE, etc.)

LOLE of original system

) A Y

A
LOLE

|

|

. LOLE of system with
! additional resource
|

|

1 ELCC

v

Value of Additional Imaginary Load (MW)

* Figure adapted from [1], general methodology discussed in [3] and [4]
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How to calculate the Capacity Credit of a resource:
Metrics

= Equivalent Generation Capacity Substitution (EGCS).

- The amount of conventional generation that could be
displaced (retired) by adding a new resource while
preserving the level of system adequacy

EENS of original
system

EENS

(MWh/Year) | [ = s —

EENS of system with
additional resource

v

Generation Capacity Substituted (MW)

* Adapted from [1], [3] and [4]
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Example: Australian
National Electricity Market (N

EM) grid
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EGCS of Wind and Solar in NEM

Penetration level increases

C—
Wind+Solar Individual ‘ et .
— | . ?
HiE ;
——— ;
Wind+Solar Agg - —— :
S
I
. L —
Wind - | —
- « Wind Max Potential: 20 GW
Solar __ Solar Max Potential: 17 GW

System Peak Demand: 36 GW

0% 10% 20% 30% 40% 50% 60%
EGCS/INSTALLED CAP (%)

mInstalled Cap/Max Potential = 1 mInstalled Cap/Max Potential = 0.8 m Installed Cap/Max Potential = 0.6
Installed Cap/Max Potential = 04 - Installed Cap/Max Potential = 0.2

Individual: The sum of EGCS values of wind & solar when operated independently
Aggregate: The EGCS value of wind & solar when they are both in the system
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EGCS of Wind, Solar and PHSP
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Adequacy of a
VRE-based NEM

How much
storage do we

need?

PHSP maximum charging
and discharging power:
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e 12h (blue)
e 24h (red)

Results from [5]
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Role and impact of network
= TJllustration of capacity credit evaluation in multi-area system!6!
- Capacity credit can be grossly

over-estimated without
considering network constraints

[~
- Network constraints have impact aLb
on system scheduling and A o
generation adequacy V| =
-a

- Meshing the system and a

stronger interconnection to an ;
area with large storage (TAS) or Q )
high capacity margin (QLD) can

unlock more CC

See [6] for details
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Capacity Credit of Distributed Energy Storage:
UK case study example

¢ Independent Control M Integrated Control
121 2) ELCC [ b)EFC c) ECC

Capacity Credit (GW)

0 10 20 30 40 500 100 20 30 40 50 0

¢ Independent Control
100% T a) ELCC b) EFC

f ¢) ECC
80% | [

M Integrated Control

Energy Capacity of Batteries (GWh)

= The energy/power ratio of batteries is assumed to be equal to 2

See [1] for details
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Key concluding remarks

= Capacity Credit (CC) is a key technical concept for system
planning and market design in the presence of renewables
and other enabling technologies such as storage

= Given the complexity of system and market operation with
renewables and storage, simple formulas do not work!

= Reliability-based Monte Carlo Simulations assessment is the
state-of-the-art and most suitable methodology

= Different metrics for capacity credit may be adopted (e.g.,
EGCS, ELCC) with different reliability indicators (e.g., LOLE)

= Renewables can provide significant capacity value, especially if
“firmed up” by storage, but the assessment is case specific and
requires suitable modelling

= Networks can be both enabling and constraining system CC

= Distributed storage can provide (substantial) CC but requires
suitable market signals over-riding self-consumption incentives
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How to calculate the Capacity Credit of a resource:
Metrics

= Equivalent Conventional Capacity (ECC).

— The capacity of a virtual conventional generator that can
replace the new resource while maintaining the same
system reliability level

= Equivalent Firm Capacity (EFC).

— The capacity of a virtual, fully reliable conventional
generator that can replace the new resource while
maintaining the same system reliability level] o1z ot original

system

LOLE

LOLE of system with
| additional resource

Capacity of Virtual Generator (MW) Capacity of Virtual Generator (MW)
(M (2)  * Adapted from [1], [3] and [4]
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EGCS of Wind and PHSP
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EGCS of Solar and PHSP
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Capacity credit assessment in multi-area systems

Wind Solar PHSP Peak
Potential Potential Projects Demand
QLD 3.89GW 4GW 0.31GW*5h 8.9GW

N S AR S T T TEETaRT T TR
s P TTe Ay et R e M ivs v
g T e ETTe T ETRE Y Tes
g g—— e TR i rsesran T
B T P T KT eI L re— SR

Conventional Conventional Generation

Generation Capacity Capacity Margin
QLD 13.63GW

....... R R g e
........ R T B T TS R
......... R T TR
P T S————
....... T B A T
Interconnector From/To To/From Capacity/ MW

Terranora QLD NSW 210

QNI QLD NSW 1078

VICI-NSW1 VIC NSW 1600

Basslink TAS VIC 594

Heywood VIC SA 600

Murraylink VIC SA 220

RENEWABLE ENERGY ZONES

0 Far Norh Queensiand

1 North Queensiand Clean Energy Hub
2 Northern Queensiand

3 Borcoldine

4 lsooc

5 Fizroy

6 Darling Downs o - o

7 North Wast New South Wales o
8 Northern New South Woles Tablelands
9 Central New South Wales Tablelands o
10 Central West New South Wales
11 Southern New South Wales Tablelands
12 Broken Hill
13 Murray River (NSW & VIC)

14 Western Victoria Py

17 South East South Ausiralia
18 Riverland (SA & NSW)

19 Mid North South Australia
20 Yorke Peninsula

21 Northern South Ausiralia
22 Leigh Creek

23 Roxby Downs

24 Eastern Eyre Peninsula
25 Western Eyre Peninsula
26 King Islnd

27 North East Tasmania

® Rockhampton

(=14}

e@

® Bundaberg

28 North West Tasmania o

29 Tasmania Midiands
30 New Englond

31 Tumot

32 CoomaMonaro
33 Ovem Murray

@ Brisbane

O

ey ' 08» ¥
§ (]
e @ @ ? " @
o (© 0 0 imid®  Coffs Horbour
] L) I
< L 2® o 9
BroTaa Hil o2
(25) @ (21998 ® gb (10) % .,,,.,,_,ge
g \ 40 2 99 ) ¥ @ Newcastle
o o ®5ydney
\ @
67 :Ad laide X °® Q &) Wolonaens
Port Lincol ~ e o Woageossardsl e

o 1 0,0 @ é,Conbarru
— e

6 °°'Q®.;Migo ogé‘ g

(] Q. palierat =

- S @Ml
Mount Gambisr o < Melbourne
ﬂ' @ 2
Warrnambeol @
D

E127)

Renewable Energy Zone (REZ)

@D indicative Wind Farm @%_ - ,Qﬁm
€D indicative Solar Farm Soeonoe gég C1T>9)
€5 indicative Hydro Generator >

@ Hobart

B indicative Geothermal Generator

See [6] for details
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Case studies for multi-area system

= NEM - Wind +Solar +Storage Aggregation System
" Three cases are studied:
— Base Case (BA):
» the system is treated as a single area system
— Multi-area Case 1 (MAC1):
* network constraints are considered

« all interconnectors are assumed to be fully reliable and
with nominal capacity

— Multi-area Case 2 (MAC2).

* both network constraints and interconnectors’
unavailability are considered

See [6] for details
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Results and analysis for multi-area systems
= NEM: Wind + Solar + Storage System

a. Base Case b. MAC1
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